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EFFECT OF AXIAL CURVATURE ON AERODYNAMIC CHARACTERISTICS 

OF PLANAR CHANNELS 

A. S. Mazo UDC 533.6.01 

The effect of axial curvature on average characteristics of a turbulent flow of 
incompressible liquid in the gap between two coaxial cylinders is studied. 

Calculation of aerodynamic characteristics of channels with cylindrical walls for lami- 
nar flow was performed in [I]. Experimental studies of turbulent flow in curvilinear chan- 
nels were performed in [2-5]. Both averaged characteristics [2-5] and turbulent flow struc- 
ture [3] were studied. However experimental data have been obtained only for relatively 
slightly curved channels (r m > 4.5H). At the same time, technological applications employ 
highly curved channels (see, e.g., [6]). 

The present study is a systematic calculation of the effect of axial curvature on the 
averaged characteristics of a turbulent flow in a channel with cylindrical walls, these 
characteristics being the velocity profile, tangent stress coefficient, and resistance coef- 
ficient, for various Reynolds numbers Re. For the sake of definiteness we will consider a 
stabilized flow, in which the velocity does not change along the axial coordinate. Such a 
flow is defined by one geometric parameter, the relative curvature rm/H (or rl/r2), and in 
the case of an incompressible liquid, by one regime parameter, the Reynolds number Re. 

It is known that curvature has a significant effect on turbulent exchange. At the pres- 
ent time various methods have been proposed to consider the effect of curvature on turbulent 
friction. In [7] an analysis and calculated comparison was made of various semiempirical 
turbulence hypotheses for a stabilized flow in a round channel. It was shown that the gen- 
eralized theory of the Prandtl displacement path 

T = p l ~  2 I01 O, ( I ) 
t 

du u 
0 --  d~- r ( 2 )  

produces satisfactory results on the whole. Prandtl's formula may be obtained from the tur- 
bulent energy balance equation, if we neglect convective (absent in stabilized flows) and 
diffusion terms and also take vt = Cle-~/2" Since the term ~t 0 is written exactly, this ex- 
pression considers the major effect of curvature, i.e., additional generation of turbulent 
energy at the concave wall, and suppression of the same at the convex wall. 

As is well-known (see, e.g., [9]) the displacement path length is weakly dependent on 
flow conditions: for a boundary layer on a plane plate and for developed flow in a tube the 
expressions for displacement path length practically coincide, and have little effect on Re 
and the axial pressure gradient. Also, as follows from physical considerations [9] and 
~rectly from measurement [3], the integral scale of turbulence (and consequently, the dis- 
placement path length) increases somewhat at the concave wall and decreases somewhat at the 
convex wall. However at present there are no systematic experimental data on the effect of 
curvature on the turbulence scale. 
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In many studies of jets along a wall and boundary layers on curvilinear surfaces, Brad- 
shaw's correction for displacement path length [I0] is used, based on the analogy between 
curvilinear flows and temperature stratification of a medium, with use of experimental data 
for an atmospheric boundary layer. This correction, formally related to the displacement 
path length, is used with the equations of motion and turbulence modeldescribing rectilinear 
flow and considers mainly the additional generation of turbulent energy in curvilinear flow. 
The presence of an empirical constant in Bradshaw's correction permits improvement of the 
correlation with experiment in each concrete case by suitable selection. However its use in 
calculating flow in a channel is not desirable. As was shown in [7], with the best choice of 
empirical constant (8 = 1 with consideration of corresponding terms in the motion and turbu- 
lence equations, not 8 = 7 and 4, as Bradshaw recommends) the Bradshaw correction improves 
agreement with experiment only insignificantly. This is true mainly because the analogy be- 
tween curvilinear flow in a channel and stratification in the boundary layer of the earth is 
valid only at low curvatures and near the wall; it is not useful for describing the flow in 
the central portion of the channel. 

We also note that introduction of turbulent viscosity and ignoring turbulent diffusion 
(in particular, coarse scale diffusion) do not permit consideration of that peculiarity of 
curvilinear flow in a channel that the zero point and the point where 6 = 0 do not coincide. 
Even so, the divergence between calculation and experiment obtained with this approach is 
not large. Consideration of the ignored factors requires transition to more complex hypoth- 
eses, which, in view of the absence of necessary data, seems premature. 

In the present study, to describe turbulent friction we will use Prandtl's generalized 
formula, Eq. (I), together with the complete equation of motion. 

The equation of motion for a stabilized flow Of viscous incompressible liquid in a plane 
circular channel in terms of shears has the form 

where 

_ a = r a , ,  ( 3 )  
dr Oe? 

The displacement path length is then specified by the Nikuradze--Prandtl formula with the Van 
Driest correction at the wall 

~ z = l - - e x p  .' ~ } ,  ( 6 )  

where ~ is taken as the distance from the wall to the point of zero shear stress. 

We integrate Eq. (3), considering that 3p/3~ is constant along the radius 

"~ = Y oqo , 1 - -7~- / '  ( 7 )  

while for r = ro, r = 0. It is convenient to express 3p/3~and ro in terms of the shear 
stress on the walls 

F ] / /  "q . ( 8 )  ro=r~__ I--20p/O~ ' 

a p  = 2 ~ - -  ~i  (q / r2)  2 
Oq~ 1 ~-- (r i /r~)  2 (9) 

The system of Eqs. (2), (4)-(9) together with boundary adhesion conditions (u = 0 at r = 
rl and r = r2) is a closed system which can be solved numerically in the following manner. 

The initial data for the solution are the ratio of the radii rl/r2 and the Reynolds 
number Re. 

If TI and T2 are known, Eqs. (9), (8), (7) are used to determine the friction distribu- 
tion. With consideration of Eqs. (5) and (6), we use Eq. (4) to find the e distribution. 
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Fig. 2. Calculated (I) and experimental [2] (2) velocity 
profiles for curvilinear channel with rm/H = 4.5 at Re = 
2 . 5 . 1 0  4 . 

With a known e distribution, we use Eq. (2) with the adhesion condition on one wall u = 0 at 
r = rl to find the velocity distribution. 

Since TI and T2 are not known beforehand, their values will be refined in the computa- 
tion process. Specifying a TI value, the value of T2 is chosen by the "target" method such 
that the adhesion condition is satisfied on the second wall. Similarly, the "target" method 
is used to select an appropriate T~ value to obtain a specified Re. 

Calculations were performed with a constant step in r. The number of points computed 
was chosen so that there were no less than two points in the viscous sublayer, which ensured 
an accuracy of I-2% in determination of ~ and T2/TI. 

Figure la compares the resistance laws for a plane rectilinear channel, obtained by 
calculation, with the experimental data of Cont-Bello [I|], wattendorf [2], and Eskinazi and 
Yeh [3]. The divergence between experiment and calculation does not exceed the scattering 
of the experimental data. There is especially good agreement with the latest, and apparently 
most accurate, data of Cont-Bello. 

According to Wattendorf's data, the resistance coefficient of a curvilinear channel with 
rm/H = 4.5 increases by 5-7% compared to that of a rectilinear channel (Fig. I). The same 
result was achieved by computation (Fig. 3). 

Figure 2 shows calculated [2] and experimental velocity profiles and shear stress. The 
divergence between calculated and experimental T profiles does not exceed 7% of the maximum 
shear stress value Tmax (Fig. 2). The tangent stress distribution in the case under consider- 
ation is characterized completely by two parameters: the position ro of the point where T = 
0 (or the ratio of the frictions at the walls), and the resistance coefficient %, which de- 
termines the slope of the curve T(r). The slope of the calculated curve agrees well with 
that of experiment. The position of the zero-friction point as determined experimentally is 
displaced toward the convex boundary compared to the calculated value. This is due to under- 
estimation of the influence of curvature in the calculation caused by ignoring its effect on 
displacement path length. 

In developed flow within a channel Eq. (3) does not relate the velocity distribution to 
the shear stress as in the case of a boundary layer. (The boundary layer equation dp*/ds = 
dr/dn with consideration of the fact that dp/dn = 0 and outside the boundary layer % = 0i 
uniquely relates the velocity profile and the friction.) Thus for the case under considera- 
tion it is necessary to know both the shear stress profile and the velocity profile to com- 
pletely define the characteristics of the averaged flow. On the whole the calculation does 
properly consider the effect of curvature on the form of the velocity profile, which mani- 
fests itself in a change in relative position of the points where u, ur, and u/r are maximal. 
Divergence between calculated and experimental velocity profiles does not exceed 7% (Fig. 2). 
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Fig. 3. Effect of channel curvature on resistance 
coefficient (a) and ratio of shear stress on walls 
(b) for various Re: I) Re = I04; 2) 105; 3) 106. 

Results of a numerical calculation of the effect of curvature on resistance coefficient 
and shear stress ratio on the walls at various Reynolds number Re are presented in Fig. 3, 
while Fig. 4 shows the effect of rm/H on u and T profiles. 

Initially, with a marked decrease in radius of curvature the resistance coefficient 
changes only slightly: the increase in turbulent exchange on the one wall is compensated to 
a significant extent by a decrease upon the other. A sharp increase in resistance occurs at 
midline radii smaller than 2-3 channel heights. This is caused by a disruption of flow sym- 
metry (Fig. 4). Such a dependence of k on rm/H may be related to the form of the T profile. 
Since in a curvilinear channel turbulent exchange in the boundary layer on the concave side 
is greater than on the convex side, the shear stress on the concave side IT2[ is greater than 
that on the convex T~, and the position of the zero shear point is thus shifted toward the 
convex side with increasing curvature. But at low curvatures such a displacement can occur 
without change in the slope of the profile, while in highly curved channels an increase in the 
slope of the profile (and thus, in the resistance coefficient k) is unavoidable, since the 
shear on the wall cannot go to zero. 

With increase in channel curvature the slope of the velocity profile at the concave 
wall (Fig. 4) increases with increase in IT2], while it decreases at the convex wall due to 
decrease of TI. In slightly curved channels (rm/H > 3) the velocity maximum is located some- 
what closer to the convex boundary. With increase in curvature the flow is "pressed" toward 
the concave boundary; at rm/H = 1.5 (Re = 10 s ) the velocity maximum is shifted to a position 
(r- r~)/H ~ 0.75. The cause of this shift in the velocity maximum is the following. Since 
in slightly curved channels u/r is small, then the points at which 0 = 0 (together with T = 

0) and the points where du/dr = 0 are close to each other, and since the position ro of zero 
shear stress is shifted toward the convex boundary, the point of maximum velocity is also 
shifted toward that side. At low rm/H , u/r is quite high, and since at the point ro du/dr = 
u/r, du/dr is also quite high, so that the decrease in du/dr to zero occurs in a further re- 
moved region. 

Axial curvature changes the character of the effect of Re on the resistance coefficient. 

u 

u m 
-1 

Z 

Fig. 4. Effect of channel curvature 
on velocity and shear stress profiles 
(Re = ]0s): I) rm/H = 4.5; 2) 2.0; 3) 
1.5. 
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While in a straight channel the resistance coefficient falls with increase in Re (in the 
postcritical range), in highly curved channels the coefficient may increase beginning at a 
certain v~lue of Re (Fig. I). This behavior of the resistance law is related to the fact 
that the effect of curvature is intensified with increased Re (Figs. 3, 4). With increase 
in Re the shear stress on the concave wall increases due to intensification of turbulent ex- 
change near that wall, while at the convex wall (near which turbulent pulsations are sup- 
pressed) the flow at sufficiently high curvature may remain laminar so that the shear stress 
then remains close to zero. This leads to sharp skewing of the z profile (Figs. 3, 4): in 
the case of laminar flow IT2/TII is close to (only slightly less than) unity, while at Re = 
106 and rm/H = 1.5 this ratio becomes greater than 4. Thus the resistance coefficient ~ in- 
creases (Fig. 3). 

NOTATION 

e, turbulent energy; H = r2 --rl, channel height; l, displacement path length; p, pres- 
r~ 

sure; r, radius; Re = UmH/V ; u, velocity; u m = ~ udr/H, mean velocity; y, distance from 

wall; ~, Van Driest's correction; 0 = du/dr- u/r, angular deformation rate; %=- (~p/~)/ 
(rmO.5pu~/H), resistance coefficient; ~, kinematic viscosity; p, density; T, shear stress; 
% angular coordinate. Indices: ~, laminar; t, turbulent; 0 corresponds to T = 0; I, con- 
vex wall; 2, concave wall. 
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